
Privomega: A Privacy-Preserving Random
Stranger Chat Protocol (Sketch)

2018-11-22T22:00:00-05:00

Contents
Introduction . 1
Background and context . 2

Roles . 2
Cryptographic primitives . 3

The Privomega privacy-preserving random stranger chat protocol . . . 5
Pseudo-anonymous identity registration 5
Random matchmaking . 6
Submitting matchmaking request 7
Verifying matchmaking request (by Bob) 7
Key exchange . 8
Sending and receiving messages 9

Constructions . 10
Integration with Double Ratchet 10

Potential attacks and countermeasures 10
Sybil attack . 10
Mailbox corruption . 10

Future research . 10
Against collusion during random matchmaking 10
Participation repudiation . 10

References . 11

:warning: This is a work-in-progress sketch.

Introduction

Omegle is the one of the first stranger chat services. To quote from their website:

Omegle (oh·meg·ull) is a great way to meet new friends. When
you use Omegle, we pick someone else at random and let you talk

1

one-on-one. To help you stay safe, chats are anonymous unless you
tell someone who you are, and you can stop a chat at any time. [1].

Well, it is not exactly accurate:

• It is not really anonymous as the server learns your IP address and
browser fingerprint, and whatever else it can use to identify you.

• It learns all the messages you sent and can attribute those messages to
you.

• Users have no participation privacy as the server learns who you are
chatting with.

• The service cannot prove that it actually randomly pairs users.
• There is no end-to-end encryption (E2EE) and server sees all your chat

messages.

Fortunately, with advances in cryptographic research in recent years, it is possible
to have a random stranger chat service that is privacy-preserving and prov-
ably random, and users are guaranteed privacy and anonymity with strong
cryptography.

In this post I will present one possible (and not so efficient) construction of such
privacy-preserving Omegle, call it Privomega, that has the following properties:

• Server does not learn who matched who or who is talking to who.
• Server does not see plaintext chat messages.
• When Alice matches Bob randomly, Alice can be assured that this Bob is

randomly chosen from pool of all online users.
• When Bob receives the first message from Alice, he can be assured that

Alice has randomly picked him from pool of all online users. (Assuming
no collusion between Alice and server, more on that later)

• Server learns nothing other than the total number of users online, users’
(one-time) public keys, and which users are posting messages (without
learning the recipient of the messages).

Background and context

Roles

In this scheme we define 3 roles:

• Alice: a user who is using the service; the initiator of random chat.
• Bob: a random user that Alice has chosen; the random target of the chat.

Note that this is not a specific “Bob” but rather a random Bob.
• Server: a server providing key directory service (with key transparency

and PIR), a key-value mailbox service (with PIR), and a random beacon
service.

2

Cryptographic primitives

In this section we outline the cryptographic primitives we will use to achieve our
goal of Privomega:

• Transparent logs will be used on key directory service to ensure consis-
tency of the bindings.

• Private information retrieval (PIR) will be used on key directory and
mailbox services to allow user to retrieve a piece of data from server without
server knowing which piece is retrieved.

• Verifiable randomness will be used so Alice can prove to Bob that she
has found Bob by random chance.

• Private end-to-end messaging will be used so Alice and Bob can
communicate with each other while preventing any third party from learning
the transcript of the conversation. It is an umbrella term and includes
schemes like digital signatures, key exchange, and authenticated
encryption.

Transparency log and key verification

In order for Alice to send an encrypted message to Bob, Alice must first know
Bob’s public key.

For a user to discover some other user’s key for end-to-end encryption, users
typically rely on a centralized directory of public keys, maintained by the service
provider. Such key servers are vulnerable to hackers and spy agencies, or service
provider themselves could be tempering with the data. If Alice asks the key
server for Bob’s key, and an attacker replaces Bob’s key with attacker’s key, the
attacker could perform man-in-the-middle attack between Alice and Bob.

Existing methods of protecting users against server compromise require users to
manually verify recipients’ accounts in-person. This simply does not work under
the anonymous setting of Privomega.

The key directory must be consistent, that is given an authenticated binding
issued by the key server for the name alice, anyone can verify that this is the same
binding for alice that every other party observed [2]. Key transparency allows
the auditing of such directories [3]. If server attempts to equivocate by issuing
multiple bindings for a single username, clients will detect the equivocation
promptly with high probability.

In Privomega, we use a key directory with key transparency for users’ public
keys, which can in practice be CONIKS. If user Alice detects that her certificate
has been changed by the server, or server is carrying out an equivocation attack,
she can immediately drop offline and disconnect from the service.

Private information retrieval

3

Let server host a mailbox model for message delivery, which is really a key-value
map, key is mailbox ID and value is a queue of messages. Server allows any user
to put any message into any mailbox. The messages are of course encrypted so
that only the intended recipient could read it. Alice and Bob can secretly agree
on the location of some mailbox where Alice is going to drop off messages to
Bob. Bob later goes to that mailbox and makes a copy of every encrypted mail,
trying to decrypt every one of them until he finds one that he is able to decrypt.

In the real world, if there is no camera or other surveillance around that mailbox,
and Bob does not get seen when he retrieves the mail, Alice can be fairly confident
that no one knows who she is writing mails to, and Bob can also be confident
that no one learns that he is the indented recipient of the mails.

Unfortunately it is not so easy to implement such anonymous mailboxes over
the internet. Even if the messages are encrypted, the metadata which includes
the identity of participants, the duration of the chat, etc, can be sensitive and
potentially leaked. The mailbox service provider may disclose users’ information
and their interaction with the mailboxes, either to sell users’ data for profit or
under the coercion of spy agencies, or simply as a result of a database breach.

A private information retrieval (PIR) protocol is a protocol that allows Alice to
retrieve an item from a database server without the server learning which item
is retrieved. A trivial PIR scheme is Alice simply downloads the entire database.

The security of PIR schemes usually fall under those two categories: information-
theoretic security and computational security. Typically computational-secure
PIR schemes are more efficient than information-theoretic-secure ones. Every
PIR protocol aims to reduce the amount of computation on both Alice and the
database server, as well as the traffic between Alice and the server.

In Privomega, we need a PIR scheme that guarantees users’ privacy when they
retrieve mails from the mailboxes. It is not required to give user privacy when
putting mails. In practice, we could deploy Pung [4] or a similar efficient
computational PIR protocol.

Verifiable random functions

A verifiable random function (VRF) is a pseudo-random function (PRF), where
the prover holding the secret key can produce a non-interactive proof that the
PRF output was correct given the input. Only the holder of the private key can
compute the hash, but anyone with public key can verify the correctness of the
hash.

Informally, the VRF functionalities we are interested in are:

(r, π)← V RF (sk, α)

4

That is, given a secret key sk and a VRF input α, the VRF would produce the
pseudorandom output r and a proof π.

{0, 1} ← V RFV erify(pk, α, r, π)

During verification, the verifier receives the public key pk, the input α, the
output r, and the proof π, the function returns 1 if the proof is valid, 0 if proof
is invalid.

In Privomega we would need a VRF so when Alice matches Bob, Alice will
include the VRF proof in her matchmaking request with Bob. This way, Bob
can verify that Alice has picked him randomly. In practice, we could deploy
EC-VRF over some curve, say Curve25519 [5].

Private end-to-end messaging

In Privomega Alice uses integrated encryption scheme to encrypt her match-
making request to Bob. Once Bob accepts the matchmaking request, Alice and
Bob derives a shared secret. From this point we can use any E2EE messaging
protocol to encrypt the messages between Alice and Bob, for example Signal’s
Double Ratchet [6], if forward secrecy or backward secrecy is important. It could
use a simple Authenticated Encryption with Associated Data (AEAD) protocol
with no forward or backward secrecy, for example AES-GCM, if we assume the
chat sessions are short and identities are not reusable.

The Privomega privacy-preserving random stranger chat
protocol

Pseudo-anonymous identity registration

Alice first generates a key pair

(ska, pka)← GenKey

Alice registers her public key pka on the server. Server upon receiving Alice’s
public key, server creates and signs a certificate for Alice, then adds her certificate
to the key directory:

(certa, ida)← Register(pka)

sig ← Sign(sks, pka||timestamp)

certa = pka||timestamp||sig

5

The certificate contains Alice’s ID ida, the timestamp of the registration, and
Alice’s public key. sig is server’s signature over the Alice’s public key and the
registration timestamp.

Alice’s user ID ida is not signed. The ID is used to lookup Alice’s key from
the key directory. It will not change Anyone would be able to retrieve Alice’s
certificate like this:

certa ← GetCert(keydir, ida)

Where keydir is the merkle tree of the key directory. Here we assume the server
uses key transparency, so Alice would verify that her ID is correct, and her
certificate is included in the key directory.

Random matchmaking

Server periodically creates and signs a random nonce, broadcasts the nonce
and server’s signature over the nonce, (noncet, sig), during every epoch t. This
random nonce can be included in the key directory under a special index - this
is to allow all users to observe the same nonce, and should reasonably prevent
equivocation attack when key transparency is used.

Alice is the initiator of a random chat. She retrieves the nonce from server for
the current epoch t, and generates her random number.

(ra, π)← V RF (ska, noncet)

Where ra is Alice’s random number that server does not know, and π is the
proof of the VRF output.

Alice then finds the random matchmaking target:

idb ← ra mod len(keydirt)

Where keydirt is the merkle tree of the key directory at epoch t. Because key
transparency is used, all users would observe the same keydirt. Here we use idb

for the ID of Alice’s pseudo-randomly matched user, call the user Bob.

Alice then retrieves Bob’s certificate using a PIR scheme:

certb ← GetCert(keydirt, idb)

The server should not learn whose certificate Alice retrieved. (A trivial way
to do this is to simply have Alice download the entire key directory at epoch

6

t) Once she gets Bob’s certificate, she extracts Bob’s public key pkb from the
certificate, and checks if the timestamp is within range for the epoch t.

Alice then creates the plaintext matchmaking request, which includes her public
key, the server nonce at epoch t, her VRF proof π, and the epoch index t.

reqab ← pka||noncet||ra||π||t

Alice then randomly samples a key pair, and encrypts the message using an
integrated encryption scheme:

(skephem, pkephem)← GenKey

kreq ← DH(skephem, pkb)

creq ← AEEncrypt(kreq, reqab)

preq ← pkephem||creq

Here AEEncrypt is the encryption function in an authenticated encryption
scheme. Alice would later transmit preq to server.

Submitting matchmaking request

Server maintains a queue of matchmaking requests. Alice simply puts her
matchmaking request into the queue. Server would learn that Alice has sent a
matchmaking request to someone, but server does not learn who she has matched
with.

Verifying matchmaking request (by Bob)

Bob is waiting on the other end for someone to match him. He polls server’s
matchmaking queue at short intervals.

He will attempt to decrypt every matchmaking request in the queue until he
finds one preq that can be correctly decrypted (i.e. decryptable, and correctly
authenticated under the authenticated encryption scheme):

(pkephem, creq)← preq

kreq ← DH(skb, pkephem)

reqab ← AEDecrypt(kreq, creq)

Once Bob has decrypted the request and gets reqab, he verifies if Alice’s VRF
output is correct:

7

1 ?= V RFV erify(pka, noncet, ra, π)

Additionally Bob also needs to verify that:

• Alice’s public key is included in a certificate in key directory in epoch t.
He can use a PIR protocol to query the key server, or he downloads the
entire key directory at t and check for the certificate.

• Alice’s certificate has the correct timestamp for epoch t
• Server’s noncet is the same one he sees at t

If everything checks out, Bob accepts Alice’s matchmaking request. Otherwise
Bob ignores the matchmaking request.

Key exchange

Once Bob accepts Alice’s matchmaking request, both parties derive a shared
secret from their public identity keys:

skab ← DH(ska, pkb)

skab ← DH(skb, pka)

Then the shared secret is passed into a KDF to derive 3 more keys:

(sida, sidb, ke)← KDF (skab)

Where sida is Alice’s sending mailbox ID, i.e. Alice puts encrypted messages to
Bob in a mailbox whose ID is sida. Similarly sidb is Bob’s sending mailbox ID.
The ke is the shared secret for E2E messaging, used to encrypt and authenticate
the messages.

Note that Alice and Bob would also get an implicit receiving mailbox ID rid
from the key exchange respectively, which is the ID of the mailbox they will use
to receive messages from the other party.

rida = sidb

ridb = sida

This key exchange is forgeable. It allows Alice or Bob to forge a key exchange
with the other, providing message repudiation. However do note that the
matchmaking request is not repudiable - Bob can prove to a third party that
Alice has matched with him (he cannot prove Alice has actually sent him a
message), therefore the participation repudiation is weak.

8

Sending and receiving messages

Alice and Bob can calculate the associated data AD that contains identity
information for both parties:

AD ← Encode(pka)||Encode(pkb)

The message m can be encrypted as:

cm ← AEADEncrypt(ke, AD,m)

Where ke is the E2E messaging key from key exchange. Here AEADEncrypt is
the encrypt function under an authenticated encryption with associated data
scheme.

The message can later be decrypted by:

m← AEADDecrypt(ke, AD, cm)

It is possible to integrate with state-of-the-art E2EE protocols instead
of a simple AEAD, if chat sessions are assumed to be long-lived.

To send a message as Alice, she would put her messages to Bob in mailbox
with ID sida. Bob would periodically retrieve mails, using a PIR scheme, from
mailbox sida. To send message as Bob, he would put his message to Alice into
mailbox sidb, which Alice would also periodically check for mails from, using a
PIR scheme.

Alice : PutMail(sida, cm)

Bob : PutMail(sidb, cm)

Server would learn that Alice and Bob are both sending messages to someone,
and the IDs of the mailboxes they put mails in, but it cannot learn if Alice is
sending messages to Bob, or if Bob is sending messages to Alice.

At this point, to chat with each other, each party would only need to store

AD, ke, sida, sidb

and they can safely delete all other keys.

9

Constructions

Integration with Double Ratchet

Use SK = ke and AD = Encode(pka)||Encode(pkb) and Bob’s identity key skb

as Bob’s initial ratchet key.

Because in Privomega the identity keys are not long lived, both parties can safely
delete their ska or skb after sending the first message, users get forward secrecy
from Double Ratchet.

Potential attacks and countermeasures

Sybil attack

• Alice sybil attack - Alice generates many keypairs to get a VRF output to
match Bob. Counter with expensive key registration

• Bob sybil attack - Bob generates a lot of identities to get a higher probability
of being matched.

• Server sybil attack - Server inserts lots of fake keys in key directory. Counter
by requiring embedment of POW in certificate.

Mailbox corruption

An attacker can attempt to corrupt mailboxes by putting large nonsense data
into mailboxes with random ID. Targeted attacks are less likely, as the send IDs
in a chat session are only known to the two participants and server.

Future research

Against collusion during random matchmaking

If server and Alice collude, they can deterministically choose Bob while producing
a fake VRF proof to convince Bob that he has been randomly chosen by Alice.
Bob will not be able to detect such attack.

Participation repudiation

• Initiator Alice cannot deny that she has talked to Bob if Bob presents the
VRF proof to a third party.

• Bob enjoys participation repudiation since he does not sign anything
• Message repudiation is always guaranteed, as the transcript can be forged

by either of the participants.

10

References

1. Omegle. Omegle.com https://www.omegle.com/
2. Marcela S. Melara and Aaron Blankstein and Joseph Bonneau and Edward

W. Felten and Michael J. Freedman. CONIKS: Bringing Key Transparency
to End Users. IACR https://eprint.iacr.org/2014/1004

3. Ryan Hurst and Gary Belvin. Security Through Transparency. Google
Security Blog https://security.googleblog.com/2017/01/security-through-
transparency.html

4. Sebastian Angel and Srinath Setty. Unobservable communi-
cation over fully untrusted infrastructure. Microsoft Research
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/pung-
osdi16.pdf

5. Sharon Goldberg. Verifiable Random Functions (VRFs). IETF
https://tools.ietf.org/id/draft-goldbe-vrf-00.html

6. Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm
https://signal.org/docs/specifications/doubleratchet/

11

	Introduction
	Background and context
	Roles
	Cryptographic primitives

	The Privomega privacy-preserving random stranger chat protocol
	Pseudo-anonymous identity registration
	Random matchmaking
	Submitting matchmaking request
	Verifying matchmaking request (by Bob)
	Key exchange
	Sending and receiving messages

	Constructions
	Integration with Double Ratchet

	Potential attacks and countermeasures
	Sybil attack
	Mailbox corruption

	Future research
	Against collusion during random matchmaking
	Participation repudiation

	References

